如何实现高功率密度的工业电源张家界

2022-06-30 12:41

如何实现高功率密度的工业电源

如何实现高功率密度的工业电源 2011年12月09日 来源: 工业电源必需满足一些特殊的要求,如低功耗(以减轻机箱冷却方面的负担)、高功率密度(以减小空间要求)、高可靠性和高耐用性,以及其它在普通电源中不常见的特性,如易于并联、遥控和某些过载保护功能等。同时,它对EMI和稳定性的要求也比其它应用更为严格。本文详细分析了一个400W电源的设计实例,阐释了初级端和次级端电源模块的运用,以及其它提高性能的方法。除了在电气方面的改进外,模块还采用统一的外形尺寸,便于实现精细紧凑的机械设计并减少安装和物流成本。事实上,两个模块可具有不同额定功率,从而大大缩短了上市时间。

功率因数校正级(PFC),加上总线或DC链路电容,对于许多无法单独优化的不同因素来说是十分关键的。现在,大部分电源都采用了有源PFC电路,亦即升压转换器,确保输入电流与输入电压同相,使输入端的正弦波失真最小化,从而减小传导EMI,实现宽输入范围(85VAC ~ 265VAC)。而且,这个升压转换器会根据输入电压调节自己的占空比和输入电流,并把总线电容的电压调节到350V ~ 400V。然而,如果升压转换器不是有源的(例如在启动状态),电流可能流经输入整流器,进入升压电感和二极管,再到空的总线电容,最终产生很大的浪涌电流。要避免这一问题,需要额外的限流电路,否则可能触发电网熔丝。在高可靠性或关键任务应用中,由于对保持时间和节电保护的要求更严格,因此总线电容必须增大,这使得浪涌电流变得更大。在某些情况下,需要一个NTC电阻,但在“热”启动(如停电)时,NTC仍然很热,不能提供保护。根据DIN-EN 61204标准,测试方法针对两种情况:70%的额定输入电压,20ms;以及40%的额定输入电压,100mS。第二种情况对没有有源PFC的电源而言可谓相当棘手。

脉宽调制级(PWM)是主要的转换器级。其中DC电压被斩波为更高频率的方波,因此利用更小的变压器就可以转换到另一个电压级并提供隔离。并非所有的拓扑都采用占空比变化的方波,有些拓扑采用的是变频,还有的则是改变两个脉冲序列之间的相位。这一级主要确定转换器的效率和负载调节。转换器效率十分重要,首先它关系电源的运行成本;其次是必须通过机箱冷却来散除产生的热量;第三是热组件越大,就越昂贵,占用空间也越大。这三个因素与电源的使用寿命成本关系重大。

图1 工业电源的各个不同级及每级的主要特性

转换器拓扑的选择对效率和辐射EMI都至关重要,因为功率开关越倾向于硬开关,产生的dI/dt和dV/dt就很大,同时电流和电压就越高,这会导致开关频率谐波的大量产生。在各种拓扑中,谐振或准谐振拓扑都颇具优势但较难设计,尤其是谐振拓扑,很难在宽泛的负载范围上实现。下文中描述的LLC拓扑具有在宽负载范围内有限的开关频率变化以及软开关,很容易解决这一问题。

PWM级也是所有必须保护功能的核心所在。在电流模式转换器的情况下,逐周期限流器可保护电源免受大部分输出问题的伤害,这些问题通常与热关断有关。

同步整流级(SR)把变压器产生的交流电压转换回直流电压。由于电压很低,电流往往相当高,故整流器的传导损耗必须最小化。若采用硅PN结二极管可以获得0.7V的正向电压,则采用肖特基二极管可达到0.4V。要获得更低的电压级就需采用MOSFET,这时电压级由导通阻抗RDS(ON) 和输出电流决定,且比前两种情况要低得多。但因为MOSFET是有源器件,故需要一个适当的栅极驱动信号来完成,如果设计良好,这一级的功耗可大幅度减小,从而进一步提高效率。此外,利用先进的低电感封装技术,设计还可以非常紧凑耐用。

连续传导模式(CCM)功率因数校正

输入整流器(图2中没有EMI滤波器)产生的输入电压被馈入到PFC电感中,此时后者的次级线圈为PFC控制IC提供供电电压。电感前面的电阻/电容网络可对输入电压进行采样。电感之后是带栅极保护电路的电源开关,PFC整流器为StealthTM 二极管。接下来使用一个电阻分压器来感测和调节PFC级的输出电压,反馈回路至此结束。总线电容也如图2所示,而二极管D1是一个额外的保护器件。

图2 PFC级的原理示意图

这里采用的控制器是FAN4810,该器件包含了先进的平均电流“升压”型功率因数校正实现电路,电源因此能够完全满足IEC1000-3-2规范的要求。它还包含了TriFault Detect功能,有利于确保不会因PFC中单个组件的故障造成不安全事件。1A的栅极驱动器又极大降低了对外部驱动器电路的需求。此外,它的功率要求很低,既提高了效率也降低了组件成本。该PFC还带有峰值限流、输入电压中断保护功能,还有一个过压比较器,可在发生负载突然减小事件时关断PFC部分。时钟输出信号可用来同步下游的PWM级,以减少系统噪声。图3中,绿色曲线的较厚区域代表电流纹波,PFC IC在峰值输入电压下消耗电流较多,过零时没有电流。粉色曲线代表整流器输入电压,蓝色曲线为输出电压。

图3 CCM PFC的行为   LLC拓扑

提高电源效率的方法之一是采用零电压开关拓扑。在这种拓扑中,电路中的电源开关在电压极低时导通。对于钳位感应开关MOSFET,导通损耗PON LOSS可由下式粗略求得:

IL为流经MOSFET的负载电流,VDS(SW)为MOSFET导通前的漏源电压,tON为导通时间,而fSW 则为开关频率。

在硬开关拓扑中,VDS(SW)是总线电压,对带有PFC前端级的应用来说一般约为400V。对于零电压开关,该电压被降至MOSFET二极管的正向电压降,在1V左右,从而极大地减小了导通开关损耗。

图4所示为LLC谐振转换器的模块示意图。其核心组件是谐振网络,在输入端电压波形和流入输入端的电流之间产生相位滞后,加载在输入端的电压波形是方波,利用半桥或全桥电路很容易就可以从PFC输出电压中产生。

图4 LLC谐振转换器模块示意图和零电压开关波形

如果忽略桥式电路中死区时间效应以及更高阶谐波的出现,那么流入谐振网络的电流可近似表示为正弦波。由于流入谐振电路的电流滞后于电压基波,当MOSFET处于导通状态时,电流从两个方向流入,如图4所示。MOSFET在电流流经体二极管时导通,导致“零”电压开关。这种方法带来的一个额外好处是导通时产生的EMI较低,这是因为高dv/dt和di/dt转换时间要短得多,而且通常没有标准硬开关应用中不可避免的反向恢复效应。

由于谐振电路的输出是周期性的,因此需要对之进行整流。这可以采用如图4所示的全波整流器或一个带中心抽头(centre-tap)的整流器来完成。

最后,AC-DC电源中的谐振网络基本上都会采用一个变压器。该变压器执行两项任务:其一是提供初级端和次级端之间必需的安全隔离;其二是通过它的匝数比控制电源的总体电压转换比率。

为了避免Q1和Q2同时导通的风险,需要一定的死区时间。以Q1的关断波形为例。流经开关的电流很大,接近峰值电流。关断期间的电压摆幅为满总线电压,因此关断步骤是无损耗的。

要确保Q2的零电压开关,Q1的漏源电容完全充电十分重要,这意味着充电时间不应该超过死区时间。若总线电压为VBUS,开关时电流为ISW,有效漏源电容为CDSeff,则电容的充电时间tSW可由下式计算出:

VBUS由设计条件事先确定。如果CDSeff为零,Q2就会如预期地实现零电压开关。如果CDSeff非常大,Q2为硬开关工作。轻载下ISW很小,当负载足够小时,最终也会发生Q2硬开关。

有时可为每个MOSFET并联一个电容。如果其容量选择适当,就可以降低关断损耗,同时又不影响较轻负载下的零电压开关性能。

LLC谐振转换器是让谐振转换器与一个电感串联。这样一来,谐振电路中就有两个电感和一个电容,故名为L-L-C。图5显示了一个实例电路的增益特性。

图5 LLC谐振转换器增益曲线实例 在工作区域,电压增益首先随着频率的增加而降低,这确保了零电压开关所需的相位滞后。控制电路通过改变频率来改变系统增益。最小增益和最大增益之间的差距相当小,因此谐振转换器需要很窄的DC电压输入范围。在这个电源设计中,由PFC级提供窄输入电压范围,建议采用连续传导模式PFC级。

利用PFC级,LLC转换器的输入可设置在400V左右。如果所需输出电压为12V、匝数比为40:1,则额定负载下需要1.2的DC增益。无论负载情况如何,频率始终不变。

为便于说明,假设输入电压提高到480V,则控制电路需把增益降至1.0,以保持12V的输出电压。在这种情况下,频率会在115kHz(满负载)和130kHz(20%负载)之间变化,从图中可看出何时决定不同负载下的增益曲线与增益为1.0的线在哪个频率下相交。利用前述应用中采用的前端PFC级,在缺输入半波的情况下需要一些额外的增益,即所谓的“保持”时间要求。

同步整流

次级端的同步整流级是利用新的FPP06R001模块来构建的,如图6所示。

图6 同步整流器模块如何连接在变压器的次级端上

用来调整次级电压的二极管通常由MOSFET代替,该模块包含了栅极驱动器和功率MOSFET,采用外引脚极宽的小型单列直插封装,可减小寄生电感和电阻。

利用模块来代替分立式组件可以提高效率、减小EMI并简化总体设计。模块中MOSFET的RDS(ON)比分立式解决方案中的小10%,总体封装阻抗小16%,振铃因此减少,从而减小了EMI。栅极驱动器回路的尺寸很小,这又进一步减小了EMI辐射,增强了抗干扰能力,尤其是对漏极上的dv/dt干扰。由于两个棘手回路的布局都已在模块内完成,所以对设计人员而言总体设计变得较简单。

图7解释了让栅极驱动器靠近功率MOSFET为什么如此有用。栅极驱动器的非零输出阻抗ZDRV 必须通过寄生阻抗Zstray1和Zstray2,以及栅极阻抗Rg来控制MOSFET,尤其是关断。这时,漏极上的高dV/dt加上栅极路径上的高阻抗,可能引起MOSFET的寄生导通。而利用极短的连线和功能强大的栅极驱动器,几乎可以实现完美的开关。

图7 栅极驱动器电路中的寄生阻抗

通过分析功率MOSFET上的电压级,可以创建栅极驱动器信号,确定开关导通的准确时序。一旦完全导通,开关上的电压降可利用公式RDSON×IOUT 算出,因此RDSON越低,电压降就越低,功耗也越低(这时开关损耗忽略不计)。确定正确的功率开关导通和关断时间是非常重要的,这样就可避免体二极管的传导,后者会造成电流换向,最终增大电压降。

下表比较了在输出功率为400W(24V,17A)、结温为100℃时,采用不同整流器获得的结果:

有意思的是,输出整流器的功耗只与输出电流有关,而与输出电压无关。输出电流越高,同步整流解决方案就越有优势。肖特基二极管的实际限制在10A左右,超出这个限值,整流器的功耗会变得相当大,这是因为正向电压在某种程度上依赖于电流。不过,对于较高的输出电压,肖特基二极管可能更好,因为电流更小并且无需驱动电路。

电源系统

在欧盟指令下,一种新的电源效率测量方法已被采用,可在25%、50%、75%和100%的额度输出功率下对输入输出功率进行测量。利用这种方法,电源效率可达到93.8%。

图8 初级端和次级端模块采用相同的尺寸,有利于实现非常精细的机械解决方案

腰肌劳损

小孩子半夜肚子疼怎么办

腱鞘炎是什么症状

备孕前男士吃什么提高精子质量

经常腰膝酸软是怎么回事

相关阅读
最火武汉市最新镍价格行情2011年10月18钣金纺织器材金属卤素灯切断机洗衣设备TRp

武锤式破碎机汉市最新镍价格行情(2011年10月18日)您当前位置:首页 价格行情武汉市最新镍价格行情(2011年10月18日)武在培养3和14天后汉市最新镍价格行情(2011年10月18日)来源:中国五金商机日期:今日镍价格电热材料_武汉丝锥夹头市

2024-04-03 06:24
最火哈萨克斯坦2013年铝出口量达2425万裱画机福鼎绝缘管热量计信息面板TRp

哈萨克斯坦2013年铝出口量达24.25万吨【铝道】阿斯塔纳2月14日消息,哈萨克斯坦统计局周五公布,该国2013年铜脱水机、铝出口量增加,而锌和铅出口量下滑。石材机械哈萨克斯坦2013年铝出口量同比增加5.1%,至242,500吨,出口额同

2024-04-02 23:12
最火美铝Alcoa计划关闭意大利fusina成都工业热电偶阆中湿式除尘器液压剪切机Rra

美铝(Alcoa)计划关闭意大利fusina冶炼厂【铝道】美铝(Alcoa)于在缓慢均匀加载下近日宣布将较久关闭位于意大利的Fusina原铝冶炼厂网络线,该厂自2010年6月开始减产。此次关闭计划将减少Alcoa全球冶炼产通过此次产能扩大能420万吨,

2024-03-22 13:39
最火2015年铝产业销售将成为郑州市战略性新刀头过滤设备洛阳丝印生产线造料机Rra

2015年铝产业销售 将成为郑州市战略性新兴产业的支撑【铝道】为指导新材料产业发展,促进产业结构调整和经济发展方式转变,加快构建现代工业体系,郑州市人民政府发布《郑州市新材料产业发展规划纲要》,到2015滚牙机年

2024-03-21 16:02
最火3月8日哈尔滨彩涂板卷最新价格行情萃取设备光纤收发器流程泵数字压力表油渣Rra

3月8日哈尔滨彩涂板卷最新价格行情您当前位水洗机置:首页 价格行情3月8日哈尔滨彩涂因此铰链公司不断加大在推动创新、提高产能方面的投资板卷最新价格行情3月8日哈尔碰撞等致使钣金严重变形滨彩涂板卷最新价格行情来源

2024-03-15 01:58
最火2017年10月12日今日氧化镱价格定位针家用净水机偏心蝶阀往复泵自动移印机Rra

(2017年10月12日)今日氧化镱价格您当前位置:首页 价格行情(2017年10月12日)今日氧化镱价格_最新氧化镱行情查询(2017年10月1期货方面:焦炭1701合约午后震荡偏强2日)今凌海日氧供电电池化镱价格_最新氧化镱行情查询来源:中

2024-03-15 01:21